Statistical Spatial Color Information Modeling in Images and Applications
نویسنده
چکیده
Statistical Spatial Color Information Modeling in Images and Applications Walid Elguebaly Image processing, among its vast applications, has proven particular efficiency in quality control systems. Quality control systems such as the ones in the food industry, fruits and meat industries, pharmaceutic, and hardness testing are highly dependent on the accuracy of the algorithms used to extract image feature vectors and process them. Thus, the need to build better quality systems is tied to the progress in the field of image processing. Color histograms have been widely and successfully used in many computer vision and image processing applications. However, they do not include any spatial information. We propose statistical models to integrate both color and spatial information. Our first model is based on finite mixture models which have been applied to different computer vision, image processing and pattern recognition tasks. The majority of the work done concerning finite mixture models has focused on mixtures for continuous data. However, many applications involve and generate discrete data for which discrete mixtures are better suited. In this thesis, we investigate the problem of discrete data modeling using finite mixture models. We propose a novel, well motivated mixture that we call a multinomial generalized Dirichlet mixture. Our second model is based on finite multiple-Bernoulli mixtures. For the estimation of the model's parameters, we use a maximum a posteriori (MAP) approach through deterministic annealing expectation maximization (DAEM). Smoothing priors to the components parameters are introduced to stabilize the estimation. The selection of the number of clusters is based on stochastic complexity.
منابع مشابه
Image Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing
Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...
متن کاملLearning from one example in machine vision by sharing probability densities
Human beings exhibit rapid learning when presented with a small number of images of a new object. A person can identify an object under a wide variety of visual conditions after having seen only a single example of that object. This ability can be partly explained by the application of previously learned statistical knowledge to a new setting. This thesis presents an approach to acquiring knowl...
متن کاملModeling the Spatial-chromatic Characteristics of Images by Nakagami-m Distribution
With the advent of the Internet and World Wide Web, ubiquitous multimedia information has reached every aspect of our daily lives. Multimedia data are, however, more difficult to access due to their rich and diversified interpretations. Content-based retrieval has been proposed to provide a user-friendly interface for many multimedia applications. For image retrieval, higher accuracy can be ach...
متن کاملExpert system for color image retrieval
Recently, as Web and various databases contain a large number of images, content-based image retrieval (CBIR) applications are greatly needed. This paper proposes a new image retrieval system using color-spatial information from those applications. First, this paper suggests two kinds of indexing keys to prune away irrelevant images to a given query image: major colors’ set (MCS) signature rela...
متن کاملIntroducing An Efficient Set of High Spatial Resolution Images of Urban Areas to Evaluate Building Detection Algorithms
The present work aims to introduce an efficient set of high spatial resolution (HSR) images in order to more fairly evaluate building detection algorithms. The introduced images are chosen from two recent HSR sensors (QuickBird and GeoEye-1) and based on several challenges of urban areas encountered in building detection such as diversity in building density, building dissociation, building sha...
متن کامل